74 research outputs found

    The use of standardized patients for mock oral board exams in neurology: a pilot study

    Get PDF
    BACKGROUND: Mock oral board exams, fashioned after the live patient hour of the American Board of Psychiatry and Neurology exam, are commonly part of resident assessment during residency training. Exams using real patients selected from clinics or hospitals are not standardized and do not allow comparisons of resident performance across the residency program. We sought to create a standardized patient mock oral board exam that would allow comparison of residents' clinical performance. METHODS: Three cases were created and then used for this mock oral boards exercise utilizing trained standardized patients. Residents from the University of Cincinnati and Indiana University participated in the exam. Residents were scored by attending physician examiners who directly observed the encounter with the standardized patient. The standardized patient also assessed each resident. A post-test survey was administered to ascertain participant's satisfaction with the examination process. RESULTS: Resident scores were grouped within one standard deviation of the mean, with the exception of one resident who was also subjectively felt to "fail" the exam. In exams with two faculty "evaluators", scores were highly correlated. The survey showed satisfaction with the examination process in general. CONCLUSION: Standardized patients can be used for mock oral boards in the live patient format. Our initial experience with this examination process was positive. Further testing is needed to determine if this examination format is more reliable and valid than traditional methods of assessing resident competency

    I Know My Neighbour: Individual Recognition in Octopus vulgaris

    Get PDF
    Background: Little is known about individual recognition (IR) in octopuses, although they have been abundantly studied for their sophisticated behaviour and learning capacities. Indeed, the ability of octopuses to recognise conspecifics is suggested by a number of clues emerging from both laboratory studies (where they appear to form and maintain dominance hierarchies) and field observations (octopuses of neighbouring dens display little agonism between each other). To fill this gap in knowledge, we investigated the behaviour of 24 size-matched pairs of Octopus vulgaris in laboratory conditions. Methodology/Principal Findings: The experimental design was composed of 3 phases: Phase 1 (acclimatization): 12 ‘‘sightallowed’’ (and 12 ‘‘isolated’’) pairs were maintained for 3 days in contiguous tanks separated by a transparent (and opaque) partition to allow (and block) the vision of the conspecific; Phase 2 (cohabitation): members of each pair (both sight-allowed and isolated) were transferred into an experimental tank and were allowed to interact for 15 min every day for 3 consecutive days; Phase 3 (test): each pair (both sight-allowed and isolated) was subject to a switch of an octopus to form pairs composed of either familiar (‘‘sham switches’’) or unfamiliar conspecifics (‘‘real switches’’). Longer latencies (i.e. the time elapsed from the first interaction) and fewer physical contacts in the familiar pairs as opposed to the unfamiliar pairs were used as proxies for recognition. Conclusions: Octopuses appear able to recognise conspecifics and to remember the individual previously met for at leas

    16S rRNA gene metabarcoding and TEM reveals different ecological strategies within the genus Neogloboquadrina (planktonic foraminifer)

    Get PDF
    CB was supported on a Daphne Jackson Fellowship sponsored by Natural Environmental Research Council (www.nerc.ac.uk) and the University of Edinburgh via the Daphne Jackson Trust. Field collections were supported by the National Science Foundation (www.nsf.gov) grant number OCE-1261519 to ADR and JSF.Uncovering the complexities of trophic and metabolic interactions among microorganisms is essential for the understanding of marine biogeochemical cycling and modelling climate-driven ecosystem shifts. High-throughput DNA sequencing methods provide valuable tools for examining these complex interactions, although this remains challenging, as many microorganisms are difficult to isolate, identify and culture. We use two species of planktonic foraminifera from the climatically susceptible, palaeoceanographically important genus Neogloboquadrina, as ideal test microorganisms for the application of 16S rRNA gene metabarcoding. Neogloboquadrina dutertrei and Neogloboquadrina incompta were collected from the California Current and subjected to either 16S rRNA gene metabarcoding, fluorescence microscopy, or transmission electron microscopy (TEM) to investigate their species-specific trophic interactions and potential symbiotic associations. 53–99% of 16S rRNA gene sequences recovered from two specimens of N. dutertrei were assigned to a single operational taxonomic unit (OTU) from a chloroplast of the phylum Stramenopile. TEM observations confirmed the presence of numerous intact coccoid algae within the host cell, consistent with algal symbionts. Based on sequence data and observed ultrastructure, we taxonomically assign the putative algal symbionts to Pelagophyceae and not Chrysophyceae, as previously reported in this species. In addition, our data shows that N. dutertrei feeds on protists within particulate organic matter (POM), but not on bacteria as a major food source. In total contrast, of OTUs recovered from three N. incompta specimens, 83–95% were assigned to bacterial classes Alteromonadales and Vibrionales of the order Gammaproteobacteria. TEM demonstrates that these bacteria are a food source, not putative symbionts. Contrary to the current view that non-spinose foraminifera are predominantly herbivorous, neither N. dutertrei nor N. incompta contained significant numbers of phytoplankton OTUs. We present an alternative view of their trophic interactions and discuss these results within the context of modelling global planktonic foraminiferal abundances in response to high-latitude climate change.Publisher PDFPeer reviewe
    corecore